skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Orunesajo, Emmanuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate an improved two-camera system for multi-mass and multi-hit three-dimensional (3D) momentum imaging of ions. The imaging system employs two conventional complementary metal–oxide–semiconductor cameras. We have shown previously that the system can time slice ion Newton spheres with a time resolution of 8.8 ns, limited by camera timing jitter [J. Chem. Phys., 158, 191104 (2023)]. In this work, a jitter correction method was developed to suppress the camera jitter and improve the time resolution to better than 2 ns. With this resolution, full 3D momentum distributions of ions can be obtained. We further show that this method can detect two ions with different masses when utilizing both the rising and falling edges of the cameras. 
    more » « less
  2. We demonstrate a simple approach to achieve three-dimensional ion momentum imaging. The method employs two complementary metal–oxide–semiconductor cameras in addition to a standard microchannel plates/phosphor screen imaging detector. The two cameras are timed to measure the decay of luminescence excited by ion hits to extract the time of flight. The achieved time resolution is better than 10 ns, which is mainly limited by camera jitters. A better than 5 ns resolution can be achieved when the jitter is suppressed. 
    more » « less